Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam
 January 2016: Problem 4 Solution

Exercise. Suppose f is an entire function with $\iint_{\mathbb{C}}|f(z)|^{2} d x d y<\infty$, Show taht $f(z)=0$ for all $z \in \mathbb{C}$

Solution.

$$
\begin{array}{rlr}
\iint_{\mathbb{C}}|f(z)|^{2} d x d y<\infty & \Longrightarrow & \iint_{\mathbb{C}}|f(z)|^{2} d x d y \text { exists } \\
& \Longrightarrow & |f(z)|^{2} \text { is bounded } \\
& \Longrightarrow & |f(z)| \text { is bounded } \\
& & f(z) \text { is bounded }
\end{array}
$$

So f is a bounded, entire function $\Longrightarrow f$ is constant.
If $f(z) \neq 0$ then $|f(z)|^{2}=c \in \mathbb{R}^{+}$

$$
\Longrightarrow \iint_{\mathbb{C}}|f(z)|^{2} d x d y=c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 1 d x d y=\infty
$$

So, $f(z)=0$ for all $z \in \mathbb{C}$.

